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I. INTRODUCTION

A serious problem In the theory of the turbulent flow of two-phase
systems is that while very often one of the phases Is a bona fJde fluid,

the other one, if isolated, would have a collision mean free path so
large that the usual continuum approximation cannot be applied to its
description. Examples of such a situation include flows in pulverized
coal gasifiers, certain problems occurring in meteorology, such as flows
in clouds and many others. In this paper we suggest a description of
such flows by means of a mixed system of equations: one describes the
flow of the possibly dilute (generally particulate) phase by means of a
transport equation of the Boltzmann type, while using the Navier-Stokes
(NS) equations for the fluid phase. Generally, however, one cannot use
either the Boltzmann equation or NS in their "textbook form". First of
all, the interaction between the phases Is a dissipative one; hence the
volume element of the phase space is not constant in time and the
Boltzmann equation has to be appropriately modified.

Second, we use a statistical description of the turbulent flow of

the fluid phase and thus, smooth solutions of NS are used only to
describe the average flow whereas the probability distribution of
velocity fluctuations is given by an expression derived in a previous

2
paper of ours.

The paper is organized as follows. In the next section we derive
the modifications necessary to transport equations of the Boltzmann type
in the presence of dissipative forces. We derive an explicit expression
for the extra term appearing in the transport equation in terms of the
force acting upon a single particle. In Sec. 3 we briefly review the

formalism developed in Ref. 2 and apply it to the coupled two-phase
system. In particular, we derive moment equations for the particle

phase in the leading approximation of a Chapman-Enskog expansion. The
results are discussed in Sec. 4; in particular, we point out possible
directions in which our results can be generalized.

I. PARTICLE TRANSPORT IN A DISSIPATIVE MEDIUM

Consider a system of particles with an ensemble average of the
I i I i

phase space density given by f(x , v ), where x and v stand for the
components of the particle position and velocity vector, respectively.
The integral of f over the entire phase space gives the total number of
particles. The particles are acted upon by "slowly varying" forces
exerted by the carrying medium: the interaction between the particles

IC. DeDominicis and L. Peliti, "Field Theory, Renormalization and
Critical Dynamics Above T : Helium, Antiferromagnets and Liquid-Gasc

Systems," Phys, Rev., Vol. B18, pp. 353-376, 1978, and references
quoted there.

2G. Domokos, S. Kovesi-Domokos and C. K. Zoltani, "Random Systems,
Turbulence and Disordering Fields," Phys. Rev. A, submitted for
ptibl ication.
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is described by means of a collision functional. In the Boltzmann
3

approximation to the transport problem, cf., e.g., Huang , Chapter 5,
the change in time of the phase space density is given by the equation:

d- (fdsxd'v) = F[f]dsxdsv , (2.1)

where F stands for the collision functional and the time derivative is
the total derivative. In this paper we assume for the sake of sim-
plicity that the phases are non-reactive. Hence, in particular, the
particle mass (or, in an inhomogeneous particle phase, the average
particle mass), m, stays constant. In the present work, we need not
specify a detailed form of the collision functional, F[f]. In general.
its precise form appears to be of little immediate relevance, as long as
the average momentum transfer in a binary collision is nonzero. The
"textbook form" of the Boltzmann equation is arrived at by using the
constancy in time of the volume element in phase space (Liouville's
theorem) and dividing out by the phase space volume element. In the
problem we are interested in, Liouville's theorem is not valid: the
force by means of which a carrying fluid acts upon the particles is a
velocity dependent one. Let us assume that the equations of motion are
of the form:

dx I

v 1 (2.2)

With this, one readily finds:

(dxd'v) = (--)/m (2.3)
av

Hence, the correct form of the transport equation describing the time
change of the phase space density becomes:

-f + V f3f + )
-t x1  m = F[f]. 2 

If all forces were conservative, the last term on the l.h.s. of Eq.
(2.4) would vanish. Y,

We model the interphase interaction as follows. Assuming that. thf,
particle phase consists of particles which have random shapes and are
randomly oriented, it is clear from Galilean invariance that the forcr
which acts upon a particle of a given velocity must be proportional t1:
the relative velocity of the particle and the surrounding fluid e]en',c

3K. Huang, Statistical Mechanics, Wiley, New York, 1978.
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We write the force in the form:

f = 6ur v a p (uI - vI )D(R ) , (2.5)p

where the components of the fluid velocity are denoted by u , Pf stands

for the mass density of the fluid, v is an effective klnematic viscosity
acting between the fluid and the particle. The dimensionless function
D(R p) describes the deviation of the force from Stokes' law. It depends

I a

on the dimensionless "particle Reynolds number", R = u i - v 1 , where

a is the average radius of a particle. The normalization has been
chosen in such a way that D(O) = 1. At this stage we do not specify the
function D any further. For high values of R p, there exist no good

theoretical expressions for it; probably, one has to be satisfied with a
semiempirical relation. Corresponding to a force given by Eq. (2.5),
there Is a force acting upon the fluid, Its density being given by:

y= -fdv f (2.6)

Using Eq. (2.5), a straightforward computation leads to the expression
of the divergence appearing in the transport Eq. (2.4). We find:

_T -6n P a pf(3D + R pD') , (2.7)

where the prime denotes the derivative of D with respect Its argument.
We see that even if the drag is assumed to be obeying Stokes' law, i.e.,
R is small, there is a finite correction to the transport equationP
arising from the shrinkage of the phase space.

A further remark Is in order at this point. As discussed in the
Introduction, we are proposing to apply a statistical theory of the

Iturbulent flow of the fluid phase. As a consequence, the components, u
of the fluid velocity are to be treated as random variables. Thus, the
transport equation has to be averaged over the probability distribution

i
of u

III. STATISTICAL THEORY. MOMENT EQUATIONS

We start by reviewing the statistical theory of a chaotic process
(turbulence in particular) as formulated in Ref. 2. We need a formula-
tion more general than the one Just suitable for the investigation of a
single phase system.

Consider a dynamical system which exhibits chaotic behavior. We
denote the collection of dynamical variables describing the system by X.
In practically important. cases X Is an element of a vector bundle over

3 1.aeqain
space-time, i.e., R x R1 . We assume that the dynamical equations
satisfied by X are of the form,

-7-



at X -V[x] =0 , (3.1)

where IF is a map of the fibration onto itself. Following the ideas of
Martin et aL., and DeDominicis et al., Ref. 1, it was found in Ref. 2
that the probability measure over the (generally infinite dimensional)
phase space characterizing chaotic behavior is governed by a probability
measure proportional to:

DX Det(a - 8-F) exp - <a - la -'F>, (3.2)

where DX stands for a volume element over the bundle and < > is a
scalar product over it. The determinant has to be given an appropriate

meaning, typically in terms of an integral over Grassmann variables. 4

Our coupled system of equations, consisting of Eqs. (2.4) and (2.5)
and NS with an external force density given by Eq. (2.6), does not fit
directly into this formalism. However, a Chapman-Enskog expansion of
the transport equation (cf., Huang, loc. cit.) leads to a system of
equations which is of the form Eq. (3.1); moreover, it also provides a
practical approach to the solution. In this work, we restrict ourselves
to the leading approximation of the Chapman-Enskog expansion. To that
order (local equilibrium), the physics is entirely governed by the
conservation laws of particle number, energy and momentum. Due to the
fact that the transport equation is not entirely of the standard form,
we also have to rederive the conservation laws.

Let us introduce some notation. The number density of particles is
denoted by n, and if A is any function on the phase space, its velocity
average is denoted by angular brackets:

n = fd'v f, < A > = [fd'v f A]/n (3.3)

Let Y denote any quantity conserved in the interparticle collision,
i.e.,

fd'v Y F[f] = 0, (3.4)

cf., Huang, loc. cit. Then, in view of eqs. (2.4) and (3.4) we have a

o i C) fi <) (af

fd'v Y + v - + (--) -- + (.)/m) f = 0. (3.5)axav v

On performing some integrations by parts in order to bring the deriva--
tives over to Y, we obtain the conservation law in the form:

a a "jn ay n ilay

-(n <Y>) + (n <v Y>) - n- (<vf -> 0. (3 6
ax i  ax avm  V

4P. Ramond, Field Theory. A Modern Primer, Benjamin, New York, 1981,
Chapter VI1.
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* ' -- .. ~-'-]



The remarkable fact to be noticed Is that, although, in the course
of integrating by parts the third term of Eq. (3.5), one would pick up a

term proportional to the derivative of f with respect to the velocity,
that term cancels exactly with the last term. Thus, the expression of
the consevation laws is unchanged whether or not the force is velocity
dependent. (The standard textbook derivations of the Boltzmann equation
and the equations of hydrodynamics therefrom, typically assume that the
forces are conservative.) It is almost needless to remark, however,
that beyond the leading order of the Chapman-Enskog expansion, the
expression of the pressure tensor will be modified due to the velocity
dependence of the forces.

We are now ready to cast our equations into a form given by Eq.
(3.1). In the approximation we are dealing with, and on denoting,
i i

'v > w , the dynamical equations are:

m +3Q _ n <f I> 0 , (3.7a)
Dt r|

Sp - V vu + () <fl> = 0. (3.7b)
t r + f P +

(The somewhat asymmetric appearance of the coupling term between the two
equations in Eq. (3.7) is due to the fact that originally we defined the
interphase coupling in terms of a force acting upon a single particle.)

In these equations, 3. = 3/dx an Q stands for the pressure exerted by
1

the particulate phase upon itsulf. In most cases, unless the particle
densily is very high, one may set Q = 0. and we shall do so In what
follows. The symbol D/Dt stands for the Galilei invariant time

derivative, D/Dt S t + wrr; on writing down the NS equation for the

fluid phase, we implicitly assumed incompressibility. This cannot be
done for the particle phase: the equation of cont-inuit has to be taken
into account as a constraint.

In order to take the equation of continuity into account, we notice
that the equation of continuity for the particle phase reads as follows:

,3 n di(nv ) = 0 (3.8)

In the statistical theory, we will have to integrate over n and vi with

a volume element proportional to Dn Dv . In the standard fashion, (cf.
Ramond, loc. cit.) this volume element will be replaced by

Ir vrrn(39

DoDr Dn I)v 8[tn + (r v )n + r exp fd'xdt L 9 (3.9)

where a and r are Fadeev Popov glist fields, hence, they iie Grdssmann
algebra valued. The ghost Lagranglan, L , Is given by the functional

g

-9-

~ *~? ~ ~V*%%~V%



derivative of the continuity equation with respect to n, sandwiched
between the ghost fields:

L - o(3 t  + (3 rv r ) + vr 43 r)T (3.10)

The presence of a delta-functional, 8[...] in the volume element Eq.
(3.9), makes computations rather awkward. The standard trick familiar
from gauge theories, namely a Gaussian averaging over a family of gauge
conditions, is not applicable here, because Eq. (3.8) is not a gauge con-
dition. However, one may replace the delta-functional by a Gaussian, viz.

r 2r 2
6p[tn + ar(nvr)] exp - A 2 fd'xdt [at n + or(nv )] (3.11)

where A is a parameter, to be let go to zero at the end of the calcu-
lation. Furthermore, the Gaussian functional in Eq. (3.11) needs not be
normalized, since the physically interesting quantities are expressed in
the form of cumulants: their calculation is not affected by field-
Independent factors in the probability measure. Combining now these
results, we obtain the constrained functional volume element, D4, for
the stochastic (infinite dimensional Wiener) integration over the
dynamical variables of the particle phase:

14 DoIDflvln exp r , (3.12)

where

r :( fdxdt{- A- 2[t n + 43 (nvr) 2 
+ o[H 2 v r3 + ar vr Jr} (3.13)

/t r t r r 4

Given the fact that the fluid phase has been treated as an incom--
pressible one, the equation of continuity needs not be taken into
accotnt by means of the Fadeev-Popov procedure. All one needs is to
project nut. the transverse component of the hydrodynamical velocity

i
field, w , which can be done in a well-known way.

In order to complete the system Eq. (3.7), one has to compute the

quantity <f >. Given a specific model for the drag function in Eq.
(2.5), this may or may not be computed in a closed form; nevertheless,
the requirement of Galilean invariance tells us that the final expres
sion can again be cast in a form analogous to Eq. (2.5), with the

i
hydrodynamic velocity, w , replacing the parti(:le velocity. (Of course
the explicit expression of a dimensionless drag function in terms of

III w I will be different from the originally assumed form occurring
in Eq. (2.5).)

Fo liowing now the gencral procedure outlined in Ref. 2, we have to
construct a probability measure in the six-dimensional vector space

I w
formed by the components of u and w. Given the fact that the system
Eq. (3.7) consists of a set. of coupled equat ions, a consistent proced Vre4,X
is to expli itly construct the furct ional ' in Eq. (3.1). To this end,

1 )

a W ~ V *C ~4 ~ ~ 4~, ~ .-- -



we def ine the components of the ve.tor XA (1 < A < 6) as follows.

First, we define:

A A A A-3
X = u (1 _ A < 3), X = w (3 < A < 6) (3.14)

In a similar fashion, we define embeddings of the pressure gradient and
the viscous damping terms into the six dimensional velocity space. This
is straightforward: we define a diagonal tensor projecting onto the

fluid phase: PAB = 8AB if I < A, B < 3, PAR 0 otherwise. With this,

we define:

VAll Pf A V P AR

A A ft
P a p (1( A < 3), P 0 otherwise. (3.15)

It order to proceed further, we have to define a constant tensor, M,
With1 tomi)OlPleltS:

M AR =  AR 3 (A < 1), MAB = 6 A-3'B (A > B),

M 0 otherwise. (3.16)
AR

Iti terms of these quantities, we can define the six--vector of relative
A

vlocity, y as follows:

A A AR
Y ~X MB X(3.17)

One readily verifies, Y'Y 2(u - v )(u. - v.). Thus, the particle
A I I

Reynolds number can he written in terms of six-vectors as

R (a/21/2 P) Y. The next step is to express the interphase coupling

torm this is done by construc-ting the vector:

A A A A3
dA  <f > (1 < A < 3), d <f (4 < A <6) (3.18)

Final ly, the embedding of the gradient operator into the six dimensional
1), 1 c is given by:

DA  a (I < A < 3), ) - 3 (4 < A < 6) (3.19)
A A ' A A--3

With those quantities, the system E( (3.7) can he written as fo]lows:
j5

A A A P S A R ,A S B
(0 6 - X I) -t 21) X 1) 11 , 11 X I) - 1~ ) P H(5 nm

H)X U A C~ d
(Pf nm)PX PA X d A  0 (3.20)
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This form allows us to read off tile form of the functional T and
thus constuct the probability measure Eq. (3.2). The volume element is

the product, [* Dw

IV. D ISCUSS ION

Our main purpose in this work has been to establish a formalism for
the dynamical description of the turbulenit flow of a two-phase system in
which the particle phase is of an arbitrary concentration. The applica-
tion of the Chapmari-Enskog e~xpanIsion to the H-ol tzmanri equat ion, or) the
one hand, provides a powerful practical approach to thle solution, onl thle
other hand, at. any order of the expansion it casts the equations into a
form which can be handled by means of standard techniques of quantum
field theory, including resummation techniques of' perturhation expan-
sions such as the use of the renormalizat ion group, etc. In order to
apply the present formalism to real istic cases, such as f lows in a pipe,
one(, has to find an average flow around which one carries out a Reynolds
decompos it ion of' the f ields . I f one restricts oneselIf to the lecad ing
order of thle Chapman-Enskog expansion, and one cons iders some simple
types of average flows, finiding an average flow is riot. a very hard task.
For instance, in thle practically important case of a stationary flow inl

a pipe tinder uniform pressure gradient, it is easy to show that u =w

(i.e. YA= 0 and, hence. dA is authble soluio arud which
such it decompos ition c-art be carried (lit.

There is no mathematically sound way of deciding how good the Chap-
manl Enskog expansion is ini :iny given s ituat ion . However, i ntu it i ve I y
one expects that eveni though a di lute particle phase, if left. in isolIa-
t ion, wotuld he qui te far- from local ego i Ii ri tim, anl interact ion with the
fluid phase will bring the combined system quite close to local equi li
hr iurn and thus, just ify the use of a t runcated Chapman-Eriskof- exparts ton.
To some extent., this would justi fy tile two-fluid descr iption of the two

5
phase flo(w; see alsol Dlrew for a d iscs i onilt. It i s to be emphas i zed,
however , that. ott r approach i s niot tied to the use of such ant expanittont

As a f inal remark, we wish to0 draw altet~irtion to the amots ing fact%
o'xprossr-d bty Fg. (3.6. namely that tile form (If the coservaiont laws t s
ttrtcharrg ed desprite thle fact t hat the velocity delend'r(erico of thle fo)rce(s
inivalidajtes Linntvil les theorem. To some extent., this situation is
s imi 1 ar tto the one, expressed by the so tca le(d "'flI ert paradox" inl

ranisport theory: thle BolItzmiannt dist ribhut ion futlction contains mot~re

itforma t io othan the total ity oif its few moments , see e.g., 1lIenhock .

1t. A. lirew. "Mathematic-al Modell intg tf Two Phast Fl ow," itt Altifi a.,

Review (If Fluid Mechanics. Vol. 15, 1) 261. Atnual Reviews, Ptiln Alte.
] 9 6:

6 ;hF i f-'heck , "The Va lid it y and thte ii mit aIi orts of th Ito It nittrntl
F~qtia tion , Ac ta Phys . Aist r iaca . StippI. X, pp . 10t7 110 , 1 973.
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